Eco-friendly Refrigerants (For air-conditioning) ?

Certainly! Here’s a breakdown of eco-friendly refrigerants used in air conditioning, along with their key properties and applications:

Eco-Friendly Refrigerants

  1. Hydrofluoroolefins (HFOs):
    • Examples: HFO-1234yf, HFO-1234ze
    • Properties: Low Global Warming Potential (GWP), non-flammable, low toxicity
    • Applications: Automotive air conditioning, chillers, commercial refrigeration
  2. Natural Refrigerants
    • Carbon Dioxide (CO2):
      • Properties: Very low GWP (GWP=1), non-flammable, non-toxic
      • Applications: Supermarket refrigeration, heat pumps, transport refrigeration
    • Ammonia (NH3):
      • Properties: High efficiency, high toxicity, high flammability
      • Applications: Industrial refrigeration, heat pumps, chillers
    • Propane (R-290):
      • Properties: High efficiency, low GWP, highly flammable
      • Applications: Domestic refrigeration, commercial refrigeration, air conditioning
    • Isobutane (R-600a):
      • Properties: High efficiency, low GWP, highly flammable
      • Applications: Domestic refrigerators, small commercial systems

Key Considerations

  • Global Warming Potential (GWP): A measure of how much heat a greenhouse gas traps in the atmosphere compared to carbon dioxide. Lower GWP is better.  
  • Ozone Depletion Potential (ODP): A measure of a substance’s ability to deplete the ozone layer. Eco-friendly refrigerants have zero ODP.
  • Safety: Some refrigerants have flammability or toxicity concerns that require careful handling and system design.

Additional Resources

Let me know if you’d like more details on a specific refrigerant!

What is Eco-friendly Refrigerants (For air-conditioning) ?

Eco-friendly refrigerants are the superheroes of the air conditioning world, swooping in to save us from the harmful effects of traditional refrigerants! Here’s the lowdown:

What’s the Problem with Traditional Refrigerants?

Older refrigerants, like those containing chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), were found to be major culprits in:

  • Ozone Depletion: They damaged the Earth’s protective ozone layer, which shields us from harmful UV radiation.
  • Global Warming: They are potent greenhouse gases, trapping heat in the atmosphere and contributing to climate change.

Enter Eco-Friendly Refrigerants!

These are the new generation of refrigerants designed to have a much lower impact on the environment. They generally have:

  • Low Global Warming Potential (GWP): This measures how much a greenhouse gas contributes to warming the planet. Lower is better!
  • Zero Ozone Depletion Potential (ODP): They don’t harm the ozone layer.

Types of Eco-Friendly Refrigerants

Here are some of the most common ones:

  • Hydrofluoroolefins (HFOs): These are man-made refrigerants with low GWP and zero ODP. They are becoming increasingly popular in air conditioning systems.
  • Natural Refrigerants: These are substances that occur naturally in the environment and have minimal impact. Examples include:
    • Carbon Dioxide (CO2): Used in some commercial and industrial applications.
    • Ammonia (NH3): Highly efficient but can be toxic, so it’s mainly used in industrial settings.
    • Propane (R-290) and Isobutane (R-600a): Used in some smaller air conditioning units and refrigerators.

Why Should You Care?

  • Protecting the Environment: By choosing air conditioners that use eco-friendly refrigerants, you’re doing your part to combat climate change and protect the ozone layer.
  • Energy Efficiency: Many eco-friendly refrigerants are also more energy-efficient, which can save you money on your electricity bills.
  • Future-Proofing: As regulations tighten around traditional refrigerants, systems using eco-friendly alternatives will be more sustainable in the long run.

The Bottom Line

Eco-friendly refrigerants are a crucial step towards making air conditioning more sustainable. They help protect our planet while keeping us cool and comfortable!

Who is required Eco-friendly Refrigerants (For air-conditioning) ?

It’s not just one group that needs to embrace eco-friendly refrigerants – it’s a collective effort! Here’s a breakdown of who’s required to make the switch and why:

1. Manufacturers of Air Conditioning Equipment:

  • Why: They are the first link in the chain. By designing and producing AC units that use eco-friendly refrigerants, they make it possible for consumers to make sustainable choices.
  • Regulations: Many countries have regulations in place that are phasing out the use of older, harmful refrigerants in new equipment. This pushes manufacturers to innovate and adopt eco-friendly alternatives.

2. Consumers (Individuals and Businesses):

  • Why: Ultimately, the demand for eco-friendly AC units comes from consumers. By choosing to purchase and install systems that use these refrigerants, we create a market for sustainable cooling solutions.
  • Benefits: Besides the environmental benefits, consumers can often save money on energy bills as eco-friendly refrigerants are frequently more energy-efficient.

3. Technicians and Installers:

  • Why: They play a crucial role in ensuring that AC systems are properly installed and maintained. This includes handling refrigerants safely and responsibly, and being knowledgeable about the latest eco-friendly options.
  • Training: As the industry shifts towards new refrigerants, technicians need to be trained on the proper handling and installation procedures for these substances.

4. Governments and Regulatory Bodies:

  • Why: They set the standards and regulations that drive the transition to eco-friendly refrigerants. This includes setting limits on the use of harmful refrigerants, providing incentives for adopting sustainable alternatives, and ensuring compliance.
  • International Agreements: Global agreements like the Montreal Protocol play a significant role in phasing out ozone-depleting substances and promoting the use of eco-friendly refrigerants.

In essence, everyone has a role to play in the shift towards eco-friendly refrigerants. From manufacturers and consumers to technicians and governments, it’s a shared responsibility to protect our environment and ensure a sustainable future for cooling solutions.

When is required Eco-friendly Refrigerants (For air-conditioning) ?

The shift to eco-friendly refrigerants in air conditioning is happening now, and it’s not a matter of if, but when! Here’s a look at the timeline and factors driving this change:

The Urgency is Now

  • Environmental Concerns: The harmful impact of traditional refrigerants on the ozone layer and global warming is a major catalyst. We’re already experiencing the effects of climate change, making the switch to eco-friendly alternatives a pressing need.
  • Regulations and Phase-outs: Many countries have implemented regulations to phase out the production and use of older, high-GWP refrigerants. This creates a push for manufacturers to adopt eco-friendly options in new AC units.

Key Milestones and Trends

  • Montreal Protocol and Kigali Amendment: These international agreements have been instrumental in phasing out ozone-depleting substances and now focus on reducing hydrofluorocarbons (HFCs), which are potent greenhouse gases.
  • Technological Advancements: Innovation in refrigerant technology has led to the development of more efficient and environmentally friendly alternatives like HFOs and natural refrigerants.
  • Growing Consumer Awareness: Consumers are increasingly aware of the environmental impact of their choices. This drives demand for eco-friendly products, including air conditioners with sustainable refrigerants.

What This Means for You

  • New AC Purchases: When buying a new air conditioner, prioritize models that use eco-friendly refrigerants. Check the specifications or ask the seller to confirm.
  • Existing Systems: While you may not need to replace your existing AC unit immediately, consider the environmental impact of its refrigerant. When it’s time for an upgrade, make the switch to a more sustainable option.
  • Maintenance and Servicing: Ensure that technicians handling your AC system are knowledgeable about eco-friendly refrigerants and follow proper procedures for handling and disposal.

The Bottom Line

The transition to eco-friendly refrigerants is an ongoing process. While regulations and technological advancements play a crucial role, it’s also about individual choices and collective responsibility. By opting for eco-friendly AC solutions, we can contribute to a healthier planet and a more sustainable future.

COURTESY : Pique Action

Where is required Eco-friendly Refrigerants (For air-conditioning) ?

The need for eco-friendly refrigerants in air conditioning is a global concern, but the specific requirements and regulations can vary from place to place. Here’s a look at where these refrigerants are becoming essential:

1. Countries with Strong Environmental Regulations:

  • European Union: The EU has been a leader in phasing out harmful refrigerants. Their F-gas Regulation sets strict limits on the use of fluorinated greenhouse gases, pushing for the adoption of low-GWP alternatives.
  • United States: The US has its own regulations, including the American Innovation and Manufacturing (AIM) Act, which aims to phase down the production and consumption of HFCs.
  • Canada, Australia, Japan: These countries also have regulations in place to limit the use of high-GWP refrigerants and promote eco-friendly alternatives.

2. Regions with International Agreements:

  • Signatories to the Montreal Protocol and Kigali Amendment: These international agreements have been crucial in driving the global transition to eco-friendly refrigerants. Countries that have signed these agreements are committed to phasing out ozone-depleting substances and reducing HFCs.

3. Specific Applications and Industries:

  • Commercial Refrigeration: Supermarkets and other commercial spaces often require large refrigeration systems, making the switch to eco-friendly refrigerants crucial to reduce their environmental footprint.
  • Automotive Air Conditioning: The automotive industry is also moving towards eco-friendly refrigerants in vehicle AC systems.
  • Industrial Cooling: Industries that rely on cooling systems, such as manufacturing and data centers, are also adopting sustainable refrigerant solutions.

Important Considerations:

  • Local Regulations: It’s essential to check the specific regulations in your region, as they can vary significantly.
  • Safety Standards: Some eco-friendly refrigerants may have flammability or toxicity concerns, requiring adherence to safety standards and proper handling procedures.

The Bottom Line:

The need for eco-friendly refrigerants in air conditioning is a global trend driven by environmental concerns and regulations. While the specific requirements may vary, the overall goal is to reduce the impact of cooling systems on the environment and promote sustainable solutions.

How is required Eco-friendly Refrigerants (For air-conditioning) ?

The transition to eco-friendly refrigerants in air conditioning is driven by a combination of factors, making it a “required” shift in many ways. Here’s how it’s being enforced:

1. Regulations and Legislation:

  • Phase-outs: Many countries have laws in place that are phasing out the production and import of air conditioners that use older, harmful refrigerants. This effectively mandates the use of eco-friendly alternatives for new equipment.
  • Standards and Limits: Governments are setting standards for the maximum Global Warming Potential (GWP) allowed in refrigerants. This pushes manufacturers to use low-GWP options to comply with these limits.
  • Incentives: Some regions offer financial incentives, such as tax breaks or rebates, to encourage consumers and businesses to switch to AC systems with eco-friendly refrigerants.

2. International Agreements:

  • Montreal Protocol and Kigali Amendment: These agreements have been instrumental in phasing out ozone-depleting substances and now focus on reducing HFCs, which are potent greenhouse gases. Countries that have signed these agreements are obligated to implement measures to promote eco-friendly refrigerants.

3. Industry Initiatives:

  • Voluntary Commitments: Many manufacturers and industry associations have made voluntary commitments to phase out harmful refrigerants and adopt sustainable alternatives. This demonstrates a commitment to environmental responsibility and helps drive the transition.
  • Research and Development: Ongoing research and development efforts are leading to the discovery and improvement of new eco-friendly refrigerants, making them more readily available and efficient.

4. Consumer Demand:

  • Environmental Awareness: Consumers are increasingly aware of the environmental impact of their choices, including the type of refrigerant used in their AC systems. This drives demand for eco-friendly products, encouraging manufacturers to offer more sustainable options.

5. Market Forces:

  • Cost-Effectiveness: As technology advances, eco-friendly refrigerants are becoming more cost-competitive with traditional options. This makes them a more attractive choice for both consumers and businesses.

In summary, the shift to eco-friendly refrigerants is being driven by a combination of regulatory requirements, international agreements, industry initiatives, consumer demand, and market forces. It’s not just a suggestion, but a necessary change to protect our environment and ensure a sustainable future for cooling solutions.

Case study is Eco-friendly Refrigerants (For air-conditioning) ?

You got it! Here’s a case study focusing on the transition to eco-friendly refrigerants in air conditioning:

Case Study: Supermarket Chain Embraces Propane Refrigeration

Background:

A major supermarket chain in Europe was looking to reduce its environmental impact and improve energy efficiency. Their existing refrigeration systems, which used traditional HFC refrigerants, were contributing to high energy costs and had a significant global warming potential. The company decided to explore alternative refrigerant options.

Challenge:

The supermarket chain needed a refrigeration solution that could:

  • Reduce greenhouse gas emissions
  • Improve energy efficiency
  • Ensure food safety and reliability
  • Be cost-effective to implement and maintain

Solution:

After careful consideration, the supermarket chain opted for propane (R-290) as their refrigerant of choice. Propane is a natural hydrocarbon refrigerant with a very low GWP and excellent thermodynamic properties.

Implementation:

The supermarket chain began converting its stores to propane-based refrigeration systems. This involved:

  • Replacing existing refrigeration equipment with propane-compatible systems
  • Training technicians on the safe handling and maintenance of propane systems
  • Implementing safety measures to mitigate the flammability risks associated with propane

Results:

The switch to propane refrigeration resulted in several benefits for the supermarket chain:

  • Reduced Greenhouse Gas Emissions: Propane has a GWP of just 3, compared to the thousands of HFCs, significantly lowering the supermarket’s carbon footprint.
  • Improved Energy Efficiency: Propane systems are often more energy-efficient than traditional HFC systems, leading to lower electricity bills for the supermarket.
  • Cost Savings: While the initial investment in new equipment was necessary, the long-term energy savings and reduced refrigerant costs made the switch financially viable.
  • Enhanced Brand Image: By adopting an eco-friendly solution, the supermarket chain enhanced its brand image and appealed to environmentally conscious consumers.

Lessons Learned:

  • Careful Planning and Implementation: A successful transition to eco-friendly refrigerants requires careful planning, proper training, and adherence to safety protocols.
  • Collaboration: Working closely with equipment manufacturers and technicians is crucial for a smooth implementation process.
  • Long-Term Perspective: While there may be upfront costs associated with switching to eco-friendly refrigerants, the long-term environmental and financial benefits make it a worthwhile investment.

Conclusion:

This case study demonstrates that eco-friendly refrigerants like propane can provide a viable and sustainable alternative to traditional refrigerants in air conditioning and refrigeration systems. By embracing these solutions, businesses can reduce their environmental impact, improve energy efficiency, and enhance their brand image.

This is just one example, and there are many other successful case studies involving different eco-friendly refrigerants and applications.

Would you like me to provide another case study or explore a specific type of eco-friendly refrigerant?

https://www.youtube.com/watch?v=CPW0qDhx4Xc

COURTESY : PK Classes

White paper on Eco-friendly Refrigerants (For air-conditioning) ?

White Paper: The Transition to Eco-Friendly Refrigerants in Air Conditioning

Executive Summary:

The air conditioning industry is undergoing a significant transformation, driven by growing environmental concerns and evolving regulations. Traditional refrigerants, while effective, contribute significantly to ozone depletion and global warming. This white paper examines the critical need for transitioning to eco-friendly refrigerants, explores the available alternatives, discusses the challenges and opportunities associated with this shift, and offers recommendations for stakeholders.

1. The Environmental Imperative:

Traditional refrigerants, particularly chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), have been phased out due to their high Ozone Depletion Potential (ODP). However, their replacements, hydrofluorocarbons (HFCs), while ozone-friendly, possess a high Global Warming Potential (GWP). This means they trap significantly more heat in the atmosphere than carbon dioxide, contributing to climate change. The urgency to address this issue is paramount, as the demand for air conditioning continues to rise globally.

2. Eco-Friendly Refrigerant Alternatives:

Several eco-friendly refrigerants are emerging as viable replacements for HFCs:

  • Hydrofluoroolefins (HFOs): These synthetic refrigerants have a very low GWP and zero ODP. They are gaining popularity, particularly HFO-1234yf for automotive AC and HFO-1234ze for chillers.
  • Natural Refrigerants: These naturally occurring substances offer excellent environmental profiles:
    • Carbon Dioxide (CO2): GWP of 1, non-flammable, but requires high-pressure systems. Used in some commercial applications.
    • Ammonia (NH3): Excellent thermodynamic properties, but toxic and mildly flammable. Primarily used in industrial refrigeration.
    • Hydrocarbons (HCs) (Propane, Isobutane): Very low GWP, but highly flammable. Used in smaller, self-contained units like domestic refrigerators and some commercial systems with strict safety protocols.

3. Challenges and Opportunities:

Challenges:

  • Cost: Switching to new refrigerants often requires investment in new equipment and system modifications.
  • Flammability and Toxicity: Some eco-friendly refrigerants, particularly hydrocarbons and ammonia, pose flammability or toxicity risks, requiring careful handling and specialized equipment.
  • Performance: Some alternative refrigerants may have slightly different performance characteristics than traditional HFCs, requiring system adjustments.
  • Availability and Infrastructure: The availability of certain eco-friendly refrigerants and the necessary infrastructure for their handling and distribution may be limited in some regions.

Opportunities:

  • Reduced Environmental Impact: Transitioning to low-GWP refrigerants significantly reduces the contribution of air conditioning to climate change.
  • Energy Efficiency: Many eco-friendly refrigerants offer improved energy efficiency, leading to lower operating costs.
  • Innovation: The transition is driving innovation in AC technology, leading to the development of more efficient and sustainable systems.
  • Market Advantage: Companies that adopt eco-friendly refrigerants can gain a competitive advantage by appealing to environmentally conscious consumers.

4. Recommendations:

  • Policy and Regulations: Governments should implement clear and consistent regulations to phase down HFCs and incentivize the adoption of eco-friendly refrigerants.
  • Industry Collaboration: Manufacturers, technicians, and industry associations should work together to develop training programs and best practices for handling new refrigerants.
  • Research and Development: Continued investment in research and development is crucial to improve the performance and safety of eco-friendly refrigerants.
  • Consumer Education: Educating consumers about the importance of eco-friendly refrigerants can drive demand for sustainable AC solutions.
  • Life-Cycle Approach: A holistic life-cycle approach should be adopted, considering the environmental impact of refrigerant production, use, and disposal.

5. Conclusion:

The transition to eco-friendly refrigerants in air conditioning is essential for mitigating climate change and ensuring a sustainable future. While challenges exist, the opportunities are significant. By embracing innovation, fostering collaboration, and implementing effective policies, we can create a cooling industry that is both efficient and environmentally responsible. The time to act is now.

Industrial application of Eco-friendly Refrigerants (For air-conditioning) ?

Eco-friendly refrigerants are making significant strides in various industrial applications, offering sustainable alternatives to traditional refrigerants that have harmful environmental impacts. Here are some key industrial applications:

1. Industrial Refrigeration:

  • Food Processing and Storage: Industries that rely on precise temperature control for food safety and quality are adopting eco-friendly refrigerants like ammonia (R-717) and carbon dioxide (CO2). These refrigerants offer high efficiency and low environmental impact, making them ideal for large-scale refrigeration systems in food processing plants, cold storage facilities, and distribution centers.
  • Chemical and Pharmaceutical Industries: Many chemical and pharmaceutical processes require precise temperature control. Eco-friendly refrigerants like ammonia and hydrocarbons are used in these industries for cooling reactors, storage facilities, and other critical equipment.

2. Heating and Cooling:

  • District Cooling: Large-scale district cooling systems that provide centralized cooling to multiple buildings or facilities are increasingly using eco-friendly refrigerants like HFOs and CO2. These refrigerants offer efficient heat transfer and low GWP, making them suitable for large-capacity cooling applications.
  • Heat Pumps: Industrial heat pumps that provide heating and cooling for various processes are also adopting eco-friendly refrigerants. These refrigerants enable efficient heat transfer and reduce the environmental impact of heating and cooling operations.

3. Manufacturing Processes:

  • Plastics and Rubber: Many manufacturing processes, such as plastics and rubber production, require cooling for equipment and products. Eco-friendly refrigerants like hydrocarbons are used in these industries to provide efficient cooling while minimizing environmental impact.
  • Metalworking: Metalworking processes often generate heat that needs to be dissipated. Eco-friendly refrigerants are used in cooling systems to maintain optimal temperatures for equipment and workpieces.

4. Energy Production:

  • Liquefied Natural Gas (LNG) Plants: LNG plants that liquefy natural gas for transportation and storage require efficient cooling systems. Eco-friendly refrigerants like hydrocarbons are used in these plants to achieve the necessary low temperatures.
  • Geothermal Power Plants: Geothermal power plants that utilize heat from the earth’s interior to generate electricity often use eco-friendly refrigerants in their cooling systems.

5. Data Centers:

  • Cooling High-Density Servers: Data centers that house large numbers of servers generate significant amounts of heat. Eco-friendly refrigerants are used in cooling systems to maintain optimal operating temperatures for servers, ensuring efficient and reliable operation.

Benefits of Using Eco-Friendly Refrigerants in Industrial Applications:

  • Reduced Environmental Impact: Eco-friendly refrigerants have low GWP and zero ODP, minimizing their contribution to climate change and ozone depletion.
  • Improved Energy Efficiency: Many eco-friendly refrigerants offer excellent thermodynamic properties, leading to improved energy efficiency and lower operating costs.
  • Regulatory Compliance: Using eco-friendly refrigerants helps industries comply with environmental regulations and phase-out requirements for harmful refrigerants.
  • Enhanced Safety: While some eco-friendly refrigerants may have flammability or toxicity concerns, proper handling procedures and safety measures can mitigate these risks.

Challenges and Considerations:

  • Cost: Switching to eco-friendly refrigerants may require upfront investment in new equipment and system modifications.
  • Technical Requirements: Some eco-friendly refrigerants may require specialized equipment and expertise for safe handling and operation.
  • Availability: The availability of certain eco-friendly refrigerants and the necessary infrastructure may be limited in some regions.

Despite these challenges, the transition to eco-friendly refrigerants in industrial applications is essential for achieving sustainability goals and minimizing the environmental impact of cooling and refrigeration processes.

Research and development of Eco-friendly Refrigerants (For air-conditioning) ?

The research and development of eco-friendly refrigerants is a dynamic field, with ongoing efforts to find sustainable and efficient alternatives to traditional refrigerants. Here’s a glimpse into the key areas of focus:

1. Developing New Low-GWP Refrigerants:

  • Hydrofluoroolefins (HFOs): Researchers are exploring new HFOs with even lower GWP and improved thermodynamic properties. This involves synthesizing new molecules and testing their performance in various applications.
  • Hydrocarbons: While hydrocarbons like propane and isobutane are already used in some applications, research continues to optimize their use in different systems and address safety concerns related to flammability.
  • Novel Chemical Compounds: Scientists are investigating new chemical compounds and blends with the potential to serve as refrigerants. This involves exploring different chemical structures and evaluating their environmental impact, safety, and performance.

2. Improving Existing Eco-Friendly Refrigerants:

  • Enhancing Efficiency: Researchers are working to improve the energy efficiency of systems using eco-friendly refrigerants. This involves optimizing system design, heat exchangers, and other components to maximize performance.
  • Addressing Limitations: Some eco-friendly refrigerants have limitations, such as flammability or toxicity. Research is focused on developing solutions to mitigate these risks and make these refrigerants safer for wider use.
  • Expanding Applications: Scientists are exploring ways to expand the use of eco-friendly refrigerants to a wider range of applications, including high-temperature and low-temperature systems.

3. Exploring Natural Refrigerants:

  • Carbon Dioxide (CO2): Research is ongoing to improve the efficiency and cost-effectiveness of CO2-based refrigeration systems, particularly for high-pressure applications.
  • Ammonia (NH3): While ammonia is widely used in industrial refrigeration, research is focused on developing safer and more compact ammonia systems for wider applications.
  • Other Natural Substances: Scientists are investigating other naturally occurring substances, such as water and air, as potential refrigerants for specific applications.

4. Advanced Technologies and Approaches:

  • Nanotechnology: Researchers are exploring the use of nanotechnology to enhance the heat transfer properties of eco-friendly refrigerants and improve system efficiency.
  • Absorption Refrigeration: This technology uses heat instead of electricity to drive the cooling process and can utilize eco-friendly refrigerants like ammonia and water. Research is focused on improving the efficiency and reducing the size of absorption systems.
  • Thermoelectric Cooling: This technology uses electricity to create a temperature difference and can potentially utilize eco-friendly materials. Research is ongoing to improve the efficiency and reduce the cost of thermoelectric cooling devices.

5. Life-Cycle Assessment and Sustainability:

  • Minimizing Environmental Impact: Researchers are evaluating the entire life cycle of eco-friendly refrigerants, from production to disposal, to minimize their overall environmental impact.
  • Refrigerant Recovery and Recycling: Developing efficient methods for recovering and recycling refrigerants is crucial to reduce emissions and conserve resources.

Collaboration and Partnerships:

The research and development of eco-friendly refrigerants is a collaborative effort involving:

  • Universities and Research Institutions: Conducting fundamental research and developing new technologies.
  • Industry: Manufacturing and testing new refrigerants and developing compatible equipment.
  • Government Agencies: Funding research and setting regulations to promote the adoption of eco-friendly solutions.

The future of eco-friendly refrigerants looks promising, with ongoing research and development paving the way for more sustainable and efficient cooling solutions. By embracing innovation and collaboration, we can create a cooling industry that is both environmentally responsible and meets the growing global demand for comfort and refrigeration.

COURTESY : Be Smart

References

  1. Jump up to:a b c d e f g h i j k l m n ASHRAE Position Document on Natural Refrigerants. July 21, 2011. Expires July 21, 2014.
  2. Jump up to:a b Data, Reports and (2020-08-07). “Natural Refrigerants Market To Reach USD 2.88 Billion By 2027 | Reports and Data”GlobeNewswire News Room (Press release). Retrieved 2020-12-17.
  3. ^ “History of Air Conditioning”Energy.gov. Retrieved 2020-12-15.
  4. ^ US Department of Commerce, NOAA. “NOAA Global Monitoring Laboratory – Halocarbons and other Atmospheric Trace Species”www.esrl.noaa.gov. Retrieved 2020-12-16.
  5. ^ US Department of Commerce, NOAA. “NOAA Global Monitoring Laboratory – Halocarbons and other Atmospheric Trace Species”www.esrl.noaa.gov. Retrieved 2020-12-16.
  6. ^ US Department of Commerce, NOAA. “NOAA Global Monitoring Laboratory – Halocarbons and other Atmospheric Trace Species”www.esrl.noaa.gov. Retrieved 2020-12-16.
  7. ^ “The Montreal Protocol on Substances that Deplete the Ozone Layer”.
  8. ^ “Department of Agriculture, Water and the Environment”Department of Agriculture, Water and the Environment. Retrieved 2020-12-15.
  9. ^ US EPA, OAR (2015-07-15). “Recent International Developments under the Montreal Protocol”US EPA. Retrieved 2020-12-15.
  10. ^ “Global Next Generation Refrigerants (Natural Refrigerants, Hydrofluoro Olefins & Others) Market, Competition, Forecast & Opportunities, 2024 – ResearchAndMarkets.com”www.businesswire.com. 2019-10-18. Retrieved 2020-12-17.
  11. Jump up to:a b US EPA, OAR (2016-01-12). “Understanding Global Warming Potentials”US EPA. Retrieved 2020-10-19.
  12. ^ “Environmental impact indicators for refrigerants : ODP, GWP, TEWI • Darment”Darment. 2020-02-20. Retrieved 2020-12-15.
  13. Jump up to:a b “Refrigerants Environmental Data. Ozone Depletion and Global Warming Potential” (PDF).
  14. ^ Creative, Bam. “About Hydrocarbon Refrigerants”engas Australasia. Retrieved 2020-10-19.
  15. Jump up to:a b c d e f g h i j k Bolaji, B. O.; Huan, Z. (2013-02-01). “Ozone depletion and global warming: Case for the use of natural refrigerant – a review”Renewable and Sustainable Energy Reviews18: 49–54. doi:10.1016/j.rser.2012.10.008ISSN 1364-0321.
  16. Jump up to:a b c d e f g h PROKLIMA, German Federal Ministry for Economic Cooperation and Development, Natural Refrigerants, Sustainable Ozone- and Climate-Friendly Alternatives to HCFCs, 2008. Retrieved 2022-04-07.
  17. ^ “Lower and Upper Explosive Limits for Flammable Gases and Vapors (LEL/UEL)” (PDF).
  18. ^ “Hydrocarbon refrigeration, what every technician should know – Part 1”hydrocarbons21.com. Retrieved 2020-10-19.
  19. Jump up to:a b Cecchinato, Luca; Corradi, Marco; Minetto, Silvia (2012-12-15). “Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants”Applied Thermal Engineering48: 378–391. doi:10.1016/j.applthermaleng.2012.04.049ISSN 1359-4311.
  20. ^ “New Automotive Refrigerants”www.aa1car.com. Retrieved 2020-10-20.
  21. Jump up to:a b Neska, P (2010). “CO2, a Refrigerant from the Past with Prospects for Being one of the Main Refrigerants in the Future” (PDF). Greek Cold Storage and Logistics Association. Retrieved 2022-04-07.
  22. ^ “R744”r744.com. Retrieved 2020-10-20.
  23. ^ “Chapter 9: Carbon Dioxide (R744) The New Refrigerant (updated 11/26/2019)”www.ohio.edu. Retrieved 2020-10-20.
  24. ^ Cavallini, A.; Zilio, C. (2007-07-01). “Carbon dioxide as a natural refrigerant”International Journal of Low-Carbon Technologies2 (3): 225–249. doi:10.1093/ijlct/2.3.225ISSN 1748-1317.
  25. Jump up to:a b “Ammonia Refrigeration – Properties of Ammonia”www.osha.gov. Retrieved 2020-12-16.
  26. Jump up to:a b c d e f ASHRAE (2017-02-01). “ASHRAE Position Document on Ammonia as a Refrigerant” (PDF). Archived from the original (PDF) on 2020-10-25. Retrieved 2020-10-20.
  27. ^ “COPs OF R718 IN COMPARISION [sic] WITH OTHER MODERN REFRIGERANTS” (PDF).
  28. Jump up to:a b Wang, R. Z.; Li, Y. (2007-06-01). “Perspectives for natural working fluids in China”International Journal of Refrigeration30 (4): 568–581. doi:10.1016/j.ijrefrig.2006.11.004ISSN 0140-7007.
  29. ^ Lorentzen, G (1995-03-01). “The use of natural refrigerants: a complete solution to the CFC/HCFC predicament”International Journal of Refrigeration18 (3): 190–197. doi:10.1016/0140-7007(94)00001-EISSN 0140-7007.
  30. ^ Wu, Wei; Skye, Harrison M. (2018-08-01). “Progress in ground-source heat pumps using natural refrigerants”International Journal of Refrigeration92: 70–85. doi:10.1016/j.ijrefrig.2018.05.028ISSN 0140-7007PMC 6605084PMID 31274939.
  31. Jump up to:a b c “Air cycle refrigeration” (PDF).
  32. ^ “18.12: Occurrence, Preparation, and Properties of the Noble Gases”Chemistry LibreTexts. 2015-09-30. Retrieved 2020-10-20.
  33. Jump up to:a b Wang, Chi-Chuan; Hafner, Armin; Kuo, Cheng-Shu; Hsieh, Wen-Der (2012-09-01). “An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744”Renewable and Sustainable Energy Reviews16 (7): 5071–5086. doi:10.1016/j.rser.2012.04.054ISSN 1364-0321.
  34. Jump up to:a b c “Use of Lubricants in Systems Using Natural Refrigerants” (PDF).
  35. ^ “The Impact of Natural Refrigerants on Lubricants”Frozen Food Europe. 2018-03-23. Retrieved 2020-12-17.
  36. References
  37. [edit]
  38. Jump up to:a b “ANSI/ASHRAE Standard 34-2022 : Designation and Safety Classification of Refrigerants”. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2022. ISSN 1041-2336. Retrieved 2024-01-09.
  39. ^ “Refrigerant blends to challenge hydrocarbon efficiencies”. 22 December 2019.
  40. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci P. Forster; V. Ramaswamy; P. Artaxo; T. Berntsen; R. Betts; D.W. Fahey; J. Haywood; J. Lean; D.C. Lowe; G. Myhre; J. Nganga; R. Prinn; G. Raga; M. Schulz; R. Van Dorland (2007). “Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing”. In Solomon, S.; Miller, H.L.; Tignor, M.; Averyt, K.B.; Marquis, M.; Chen, Z.; Manning, M.; Qin, D. (eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, US: Cambridge University Press. Archived from the original on 1 December 2016. Retrieved 9 October 2016.
  41. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc John S. Daniel; Guus J.M. Velders; A.R. Douglass; P.M.D. Forster; D.A. Hauglustaine; I.S.A. Isaksen; L.J.M. Kuijpers; A. McCulloch; T.J. Wallington (2006). “Chapter 8. Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials” (PDF). Scientific Assessment of Ozone Depletion: 2006. Geneva, Switzerland: World Meteorological Organization. Retrieved 9 October 2016.
  42. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Myhre, G., D. Shindell, F.‐M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.‐F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.‐K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US.
  43. Jump up to:a b “Addenda to ANSI/ASHRAE Standard 34-1997”ANSI/ASHRAE Standard 34-1997, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2000-11-15. ISSN 1041-2336. Archived from the original (PDF) on 2016-10-10. Retrieved 2016-10-10.
  44. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu hv hw hx hy hz ia ib ic id ie if ig ih ii ij ik il im in io ip iq ir is it iu iv iw ix iy iz ja jb jc jd je jf jg jh ji jj jk jl jm jn jo jp jq jr js jt ju jv jw jx jy jz ka kb kc kd ke kf kg kh ki kj kk kl km kn ko kp kq kr ks kt ku kv kw kx ky kz la lb lc ld le lf lg lh li lj lk ll lm ln lo lp lq lr ls lt lu lv lw lx ly lz ma mb mc md Wieser, Michael E.; Coplen, Tyler B. (2010-12-12). “Atomic weights of the elements 2009 (IUPAC Technical Report)”Pure and Applied Chemistry83 (2): 359–396. doi:10.1351/PAC-REP-10-09-14ISSN 1365-3075S2CID 95898322.
  45. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw Wikipedia:Chemical infobox#References
  46. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu hv hw hx hy hz ia Schoen, J. Andrew, “Listing of Refrigerants” (PDF), Andy’s HVAC/R Web Page, archived from the original (PDF) on 2009-03-19, retrieved 2011-12-17
  47. Jump up to:a b c d e Intergovernmental Panel on Climate Change, ed. (2014), “Anthropogenic and Natural Radiative Forcing”, Climate Change 2013 – the Physical Science Basis, Cambridge University Press, pp. 659–740, doi:10.1017/cbo9781107415324.018ISBN 9781107415324
  48. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz ga gb gc gd ge gf gg gh gi gj gk gl gm gn go gp gq gr gs gt gu gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu hv hw hx hy hz ia ib ic id ie if ig ih ii ij ik il im in io ip iq ir is it iu iv iw ix iy iz ja jb jc jd je jf jg jh ji jj jk jl jm jn jo jp jq jr js jt ju jv jw jx jy jz ka kb kc kd ke kf kg kh ki kj kk kl km kn ko kp kq kr ks kt ku kv kw kx ky kz la lb lc ld le lf lg lh li lj lk ll lm ln lo lp lq lr ls lt lu lv lw lx ly lz ma mb mc md me mf mg mh mi mj mk ml mm mn mo mp mq mr ms mt mu mv mw mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr ns nt nu nv nw nx “Addenda m, n, o, p, q, r, s, t, u, and v to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2008-06-26. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  49. Jump up to:a b c d e f g h i j k l m n o “Class I Ozone-depleting Substances”Science – Ozone Layer Protection. US EPA. 2007. Archived from the original on 2010-12-10. Retrieved 2010-12-16.
  50. Jump up to:a b c d “ANSI/ASHRAE Addendum t to ANSI/ASHRAE Standard 34-2019: Designation and Safety Classification of Refrigerants” (PDF). ANSI/ASHRAE Standard 34-2019: Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. July 25, 2019. ISSN 1041-2336. Retrieved 2024-01-08.
  51. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x “Global Warming Potentials of ODS Substitutes”Science – Ozone Layer Protection. US EPA. 2007. Archived from the original on 2010-10-16. Retrieved 2010-12-16.
  52. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac “Class II Ozone-depleting Substances”Science – Ozone Layer Protection. US EPA. 2007. Archived from the original on 2010-12-09. Retrieved 2010-12-16.
  53. ^ The Montreal Protocol on Substances that Deplete the Ozone Layer. UNEP, 2000. ISBN 92-807-1888-6
  54. Jump up to:a b c d e f g h i j k l m n o p q Montreal Protocol on Substances that Deplete the Ozone Layer: 2006 Report of the Rigid and Flexible Foams Technical Options Committee (FTOC); 2006 Assessment (PDF), Nairobi, Kenya: United Nations Environment Programme (UNEP) Ozone Secretariat, March 2007, ISBN 978-92-807-2826-2, archived from the original (PDF) on 2012-07-22, retrieved 2010-12-16
  55. Jump up to:a b c d e f g h i j k l m n o p q r s “Addenda e, f, g, and h to ANSI/ASHRAE Standard 34-2010” (PDF). ANSI/ASHRAE Standard 34-2010, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2011-02-03. ISSN 1041-2336. Retrieved 2011-12-18.[permanent dead link]
  56. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd “Addenda d, j, l, m, and t to ANSI/ASHRAE Standard 34-2004” (PDF). ANSI/ASHRAE Standard 34-2004, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2007-03-03. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  57. Jump up to:a b c Ravishankara, A. R.; Daniel, John S.; Portmann, Robert W. (2009-08-27), “Supporting Online Material for – Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century” (PDF), Science326 (5949), Washington, DC: 123–125, Bibcode:2009Sci…326..123Rdoi:10.1126/science.1176985PMID 19713491S2CID 2100618Methane’s influence on ozone is very dependent on altitude. In the troposphere and lower stratosphere it induces ozone production via “smog chemistry”(10), while at higher altitudes it causes ozone losses […] The net effect is generally a gain in column ozone due to methane increases, both in the stratospheric column and total column(11). Thus, unlike for N2O, a calculated ODP for methane would likely be negative.
  58. Jump up to:a b c d e f g h i j k l m n o p q r s t u v Critical point (thermodynamics)#Table of liquid–vapor critical temperature and pressure for selected substances
  59. Jump up to:a b c d e f Hodnebrog, ∅.; Dalsøren, S.; Myhre, G. (2018), “Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C2H6), propane (C3H8), and butane (C4H10)”, Atmos. Sci. Lett., 2018, 19:e804 (2): e804, Bibcode:2018AtScL..19E.804Hdoi:10.1002/asl.804
  60. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 3.22. ISBN 978-0-8493-0486-6.
  61. Jump up to:a b c Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B. (2013). “1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) Stereoisomers”. The Journal of Physical Chemistry A117 (43): 11049–11065. Bibcode:2013JPCA..11711049Pdoi:10.1021/jp407823khdl:2060/20140012685PMID 24079521S2CID 25162740.
  62. ^ Hydrocarbons are assumed to be similar to Methane in terms of Semi-Empirical ODP being < 0(smog chemistry)
  63. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Composition of Refrigerant Blends, US EPA, 18 November 2014, retrieved 2022-07-19
  64. Jump up to:a b c d “Addenda af and ag to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009-06-25. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  65. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah “Addenda i, j, k, l, n, and o to ANSI/ASHRAE Standard 34-2010” (PDF). ANSI/ASHRAE Standard 34-2010, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2011-06-30. ISSN 1041-2336. Retrieved 2011-12-18.[permanent dead link]
  66. Jump up to:a b c d e f g h i j “Addenda a, b, and d to ANSI/ASHRAE Standard 34-2010” (PDF). ANSI/ASHRAE Standard 34-2010, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010-07-01. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  67. Jump up to:a b IPCC Assessment Report 4 (AR4) 2007, Table 2.14, page 212
  68. Jump up to:a b “Addenda a, b, c, d, e, f, g, and h to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2007-06-28. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  69. Jump up to:a b c d e f g h i j “Addenda x, y, aa, ab, ac, ad, and ae to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009-01-29. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  70. Jump up to:a b c d e “Addenda i, j, and k to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2008-01-24. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  71. Jump up to:a b c d e f g h i “Solstice® N40 (R-448A) | European Refrigerants”www.honeywell-refrigerants.com. Retrieved 2020-12-13.
  72. Jump up to:a b “Solstice N40 TDS” (PDF).
  73. Jump up to:a b c d e f “Forane® 449A (XP40) Refrigerant – Product Information”. Arkema. Archived from the original on 2020-10-16. Retrieved 2020-10-14.
  74. Jump up to:a b “Opteon™ XL55 Refrigerant – Product Information” (PDF). Chemours. Retrieved 2020-10-13.[permanent dead link]
  75. Jump up to:a b c d e f g “Solstice® L41y (R-452B) Refrigerant – Brochure” (PDF). Honeywell. Retrieved 2020-10-13.
  76. Jump up to:a b c d e f g h “Features and uses of RS-70” (PDF). Gas Servei. Retrieved 2022-07-19.
  77. Jump up to:a b c d e f “Opteon™ XL40 Refrigerant – Product Information” (PDF). Chemours. Retrieved 2020-10-13.[permanent dead link]
  78. Jump up to:a b c d e f “Opteon™ XL41 Refrigerant – Product Information” (PDF). Chemours. Retrieved 2020-10-13.
  79. ^ “Carrier Introduces Puron Advance™”. Carrier. 19 December 2018. Retrieved 2020-10-13.
  80. Jump up to:a b c d e f “Opteon™ XL20 Refrigerant – Product Information” (PDF). Chemours. Retrieved 2020-10-13.[permanent dead link]
  81. Jump up to:a b c d e f g “Solstice® L40X (R-455A) | European Refrigerants” (PDF). www.honeywell-refrigerants.com. Retrieved 2018-09-24.
  82. Jump up to:a b “Fluorinated alternatives in residential and light commercial applications – Forane Refrigerants” (PDF). Arkema. Archived from the original (PDF) on 2020-10-13. Retrieved 2020-10-13.
  83. Jump up to:a b c “Protection of Stratospheric Ozone: Listing of Substitutes Under the Significant New Alternatives Policy Program”Federal Register. 2020-06-12. Retrieved 2020-07-01.
  84. ^ “Federal Register :: Protection of Stratospheric Ozone: Determination 33 for Significant New Alternatives Policy Program”www.federalregister.gov. 21 July 2017. Retrieved 2019-08-16.
  85. Jump up to:a b c d e f g “Solstice® N41 (R-466A)”advancedmaterials.honeywell.com. Retrieved 2024-03-17.
  86. Jump up to:a b c d e f “Opteon™ XP10 (R-513A) refrigerant”www.chemours.com. Retrieved 2018-12-12.
  87. ^ “Opteon XP30 Product Information” (PDF). opteon.com. September 2016.
  88. ^ “Trane adopts new low GWP refrigerant R514A”. 15 June 2016.
  89. ^ “Honeywell launches R515B, its latest nonflammable HFO, as R134a replacement”. 4 February 2020.
  90. ^ PRODUCT SAFETY DATA SHEET – PRODUCT: RS-45 (R434A) (PDF), Refrigerant Solutions Limited, 2001-10-01, archived from the original (PDF) on 2011-07-03, retrieved 2011-12-16
  91. Jump up to:a b c d e f g h TRANSITIONING TO LOW-GWP – ALTERNATIVES IN DOMESTIC REFRIGERATION (PDF), US EPA, October 2010, retrieved 2011-12-17
  92. Jump up to:a b c “HC Refrigerant”.
  93. Jump up to:a b c Juhasz, Jason R. (2017). Novel Working Fluid, HFO-1336mzz(E), for Use in Waste Heat Recovery Application (PDF). 12th IEA Heat Pump Conference.
  94. ^ “EPA Adds SP34E to SNAP Program”.
  95. Jump up to:a b c “II. ADVANTAGES OF AMMONIA AS A REFRIGERANT”Ammonia: The Natural Refrigerant of Choice (An IIAR Green Paper). International Institute of Ammonia Refrigeration. Archived from the original on 2011-07-26. Retrieved 2010-12-21.
  96. Jump up to:a b “Ammonia – NH3 – Properties”. Engineering Toolbox. Retrieved 2011-12-18.
  97. Jump up to:a b “Refrigerants – Environment Properties”. Engineering ToolBox. Archived from the original on 2013-03-14. Retrieved 2011-12-27.
  98. ^ Archer, David (2005). “Fate of fossil fuel CO
    2 in geologic time”
     (PDF). Journal of Geophysical Research110 (C9): C09S05.1–6. Bibcode:2005JGRC..110.9S05Adoi:10.1029/2004JC002625. Retrieved 27 July 2007.
  99. ^ Span R, Wagner W (1996-11-01). “A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa”. Journal of Physical and Chemical Reference Data25 (6): 1519. Bibcode:1996JPCRD..25.1509Sdoi:10.1063/1.555991.
  100. Jump up to:a b c “CDC – NIOSH Pocket Guide to Chemical Hazards – Sulfur dioxide”National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention 1600 Clifton Rd. Atlanta, GA 30333, USA, 2010-11-18, retrieved 2012-02-06
  101. ^ “ICSC 0687 – VINYLIDENE FLUORIDE”www.ilo.org. Retrieved 2018-06-18.
  102. ^ “New HCFO refrigerant is ASHRAE listed”Cooling Post. 2017-10-23. Retrieved 2021-02-06.
  103. ^ “NEC develops cooling technology for data centers that reduces air conditioning power by 50%”NEC. Retrieved 2021-02-06.
  104. ^ “NEC, NTT develop data center cooling system using new low pressure refrigerant”www.datacenterdynamics.com. 3 September 2020. Retrieved 2021-02-06.
  105. Jump up to:a b c d e f g “New HCFO refrigerant is ASHRAE listed”. 23 October 2017.
  106. Jump up to:a b c “Solstice® LBA Technical Brochure | Blowing Agents”www.honeywell-blowingagents.com. Archived from the original on 2016-08-17. Retrieved 2016-07-05.
  107. Jump up to:a b GM First to Market Greenhouse Gas-Friendly Air Conditioning Refrigerant in U.S.Warren, Michigan: General Motors, 2010-07-23, retrieved 2010-12-27
  108. Jump up to:a b Everitt, Neil (2014-02-03). “IPCC confirms HFO GWPs are less than 1”Cooling Post. Retrieved 2024-09-16.
  109. ^ “ANSI/ASHRAE Addendum c to ANSI/ASHRAE Standard 34-2010: Designation and Safety Classification of Refrigerants” (PDF). ASHRAE. 2011-07-27.
  110. Jump up to:a b c “Addendum w to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2008-11-18. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  111. ^ https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2524&context=iracc [bare URL PDF]
  112. ^ “Numbering Scheme for Ozone-Depleting Substances and their Substitutes”Science – Ozone Layer Protection. US EPA. 2007. Retrieved 2011-12-18.
  113. ^ “ANSI/ASHRAE Addendum ak to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010-02-24. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  114. Jump up to:a b c “ANSI/ASHRAE Addenda z, ah, ai, and aj to ANSI/ASHRAE Standard 34-2007” (PDF). ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010-01-28. ISSN 1041-2336. Archived from the original (PDF) on 2011-10-12. Retrieved 2011-12-18.
  115. ^ Wade, Leroy G. Jr. (2006). Organic Chemistry (Sixth ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall. pp. 279ISBN 978-0-13-147871-8OCLC 56876670.

Recommended HashTags

Leave a Comment

Your email address will not be published. Required fields are marked *

Translate »